Inteligência artificial na odontologia: uma revisão narrativa de literatura

Autores

  • Gleica Savegnago Universidade Federal de Santa Maria
  • Guilherme Vaz Pinto Universidade Franciscana
  • Carolina Fiorenza Snovareski Universidade Federal de Santa Maria
  • Nathan de Oliveira Hamad
  • Geraldo Fagundes Serpa
  • Gabriela Salatino Liedke

DOI:

https://doi.org/10.5335/rfo.v29i1.15733

Palavras-chave:

Inteligência Artificial, Odontologia, Diagnóstico

Resumo

Objetivos: analisar, através de uma revisão narrativa da literatura, a aplicabilidade da IA na odontologia e proporcionar uma atualização sobre o desempenho da IA nas áreas odontológicas. Revisão de literatura: a inteligência artificial tem se tornado cada vez mais integrada à saúde e tem desempenhado um papel crucial através do aumento da precisão do diagnóstico, otimização do tempo de trabalho do profissional e personalização do tratamento. Na odontologia, a IA tem sido cada vez mais presente devido à digitalização e avanços tecnológicos nessa área. Os estudos demonstraram resultados promissores da aplicação da IA em diversas áreas da Odontologia como Periodontia, Endodontia, Ortodontia, Cirurgia Bucomaxilofacial, Patologia, Cariologia, Implantodontia e Odontologia Forense. Considerações finais: a IA tem desempenhado um papel cada vez mais significativo na área da odontologia, com potencial para revolucionar a maneira como os profissionais de odontologia abordam o diagnóstico, planejamento e tratamento de seus pacientes. No entanto, é fundamental lembrar que embora a IA possa aprimorar a precisão e eficiência no atendimento clínico, ela não substitui a experiência e julgamento dos profissionais de saúde. A interação harmoniosa entre a capacidade da IA e o conhecimento humano é essencial para garantir uma abordagem odontológica completa e de qualidade

Downloads

Não há dados estatísticos.

Referências

Turing AM. Computing Machinery and Intelligence. Mind. 1950;59(236):433–60.

Tandon D, Rajawat J. Present and future of artificial intelligence in dentistry. J Oral Biol Craniofacial Res [Internet]. 2020;10(4):391–6.

Singh J, Singh S, Chandra S, Singh D, Mohammad S. Longitudinal Analysis of Artificial Intelligence Awareness amongst Dentists in India : A Cross-Sectional Study. J Dent Oro-facial Res. 2020;16(1):2–8.

McCarthy J, Minsky ML, Rochester N, Shannon CE. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 2006;27(4):12–4.

Babu A, Andrew Onesimu J, Martin Sagayam K. Artificial Intelligence in dentistry: Concepts, Applications and Research Challenges. E3S Web Conf. 2021;297:1074.

Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence. J Dent Res. 2020;99(3):241–8.

Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73–81.

Bini SA. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J Arthroplasty. 2018;33(8):2358–61.

Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofacial Radiol. 2022;51(1):1–12.

Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol. 2017;52(7):434–40.

Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68(1):94–100.

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc. 2016;316(22):2402–10.

Song QZ, Zhao L, Luo XK, Dou XC. Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. J Healthc Eng. 2017;2017(8314740):1–7.

Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning. Sci Rep. 2017;7(1):1–8.

Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017;7(1).

Xue Y, Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 2017;12(6):1–9.

Ossowska A, Kusiak A. Artificial Intelligence in Dentistry — Narrative Review. Int J Environ Res Public Health. 2022;19(6):1–10.

Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;50(3):193–8.

Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry – A systematic review. J Dent Sci. 2021;16(1):508–22.

Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23.

Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci Rep. 2019;9(1):1–6.

Ferreira ML, Buligon MP, Sfreddo CS, Liedke GS, Morgental RD. Factors related to apical periodontitis in a southern Brazilian population: a multilevel analysis. Braz Oral Res. 2022;36:e112.

Buligon MP, Marin JA, Wolle CFB, Liedke GS, Sfreddo CS, Bier CAS, et al. Apical periodontitis and associated factors in a rural population of southern Brazil: a multilevel analysis. Clin Oral Investig. 2023;27(6):2887–97.

Boreak N. Effectiveness of Artifcial Intelligence Applications Designed for Endodontic Diagnosis, Decision-making, and Prediction of Prognosis: A Systematic Review. J Contemp Dent Pract. 2020;21(8):926–34.

Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45(3):257–65.

Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol. 2019;48(3):1–7.

Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917–922.e5.

Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of Vertical Root Fractures in Intact and Endodontically Treated Premolar Teeth by Designing a Probabilistic Neural Network: An ex Vivo Study. Dentomaxillofacial Radiol. 2017;46(2).

Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod. 2020;46(7):987–93.

Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence - A Comprehensive Review. Biomed Res Int. 2022;2022.

Baig I, Azam S, Mushtaq T Bin. Artificial intelligence in dentistry: Literature Review. J Pharm Res Int. 2022;34(53B):7–14.

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.

Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021;25(7):4299–309.

Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.

Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofacial Res. 2021;24(S2):37–42.

Jiang F, Guo Y, Yang C, Zhou Y, Lin Y, Cheng F, et al. Artificial intelligence system for automated landmark localization and analysis of cephalometry. Dentomaxillofacial Radiol. 2022;

Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 2016 Sep 29;6(33581):1–10.

Hwang HW, Moon JH, Kim MG, Donatelli RE, Lee SJ. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021;91(3):329–35.

Choi H Il, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial Intelligent Model with Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J Craniofac Surg. 2019;30(7):1986–9.

Li P, Kong D, Tang T, Su D, Yang P, Wang H, et al. Orthodontic Treatment Planning based on Artificial Neural Networks. Sci Rep. 2019;9(1):1–9.

Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. Orthod Craniofacial Res. 2021;24(S2):76–83.

Choi E, Lee S, Jeong E, Shin S, Park H, Youm S, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Sci Rep. 2022;12(1):1–7.

Yoo JH, Yeom HG, Shin WS, Yun JP, Lee JH, Jeong SH, et al. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1–9.

Zhang W, Li J, Li ZB, Li Z. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep. 2018;8(1):1–9.

Pauwels R. A brief introduction to concepts and applications of artificial intelligence in dental imaging. Oral Radiol. 2021;37(1):153–60.

Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of Jaw tumors. Healthc Inform Res. 2018;24(3):236–41.

Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofacial Radiol. 2019;48(1).

Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.

Geetha V, Aprameya KS, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Heal Inf Sci Syst. 2020;8(1).

Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

Devlin H, Williams T, Graham J, Ashley M. The ADEPT study: a comparative study of dentists’ ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. Br Dent J. 2021;231(8):481–5.

Duong DL, Nguyen QDN, Tong MS, Vu MT, Lim JD, Kuo RF. Proof-of-concept study on an automatic computational system in detecting and classifying occlusal caries lesions from smartphone color images of unrestored extracted teeth. Diagnostics. 2021;11(7).

Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs radiographs. Med. 2020;99(26):e20787.

Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, et al. Deep neural networks for dental implant system classification. Biomolecules. 2020;10(7):1–13.

Liu CH, Lin CJ, Hu YH, You ZH. Predicting the failure of dental implants using supervised learning techniques. Appl Sci. 2018;8(5):1–11.

Ha SR, Park HS, Kim EH, Kim HK, Yang JY, Heo J, et al. A pilot study using machine learning methods about factors influencing prognosis of dental implants. J Adv Prosthodont. 2018;10(6):395–400.

Johnson A. A Morphological Study of Tongue and its Role in Forensics Odontology. J Forensic Sci Crim Investig. 2018;7(5):1–5.

Patil V, Vineetha R, Vatsa S, Shetty DK, Raju A, Naik N, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1).

Niño-Sandoval TC, Guevara Pérez S V., González FA, Jaque RA, Infante-Contreras C. Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III. Forensic Sci Int. 2017;281:187.e1-187.e7.

Mahasantipiya PM, Yeesarapat U, Suriyadet T, Sricharoen J, Dumrongwanich A, Thaiupathump T. Bite mark identification using neural networks: A preliminary study. IMECS 2011 - Int MultiConference Eng Comput Sci 2011. 2011;1:65–8.

Downloads

Publicado

14-04-2024

Como Citar

Savegnago, G., Vaz Pinto, G. ., Fiorenza Snovareski, C., de Oliveira Hamad, N. ., Fagundes Serpa, G. ., & Salatino Liedke, G. (2024). Inteligência artificial na odontologia: uma revisão narrativa de literatura. Revista Da Faculdade De Odontologia - UPF, 29(1). https://doi.org/10.5335/rfo.v29i1.15733

Edição

Seção

Revisão de Literatura