Influência do posicionamento mandibular na acurácia e confiabilidade de medidas lineares em tomografia computadorizada de feixe cônico utilizando diferentes voxels e dois softwares

  • REV FO Universidade de Passo Fundo
Palavras-chave: precisão da medição dimensional; tomografia computadorizada de feixe cônico; diagnóstico por imagem; mandíbula; software.

Resumo

Objetivo: este estudo avaliou a acurácia e confiabilidadedas medidas lineares em exames detomografia computadorizada de feixe cônico(TCFC), em dois softwares, utilizando diferentesvoxels e variando o posicionamento da mandíbula.Material e Métodos: 10 imagens de TCFC demandíbulas humanas com 25 pontos foram obtidas,usando diferentes protocolos de aquisição(0.250, 0.300, 0.400-mm voxels) e orientações damandíbula (centralizada, rotacionada 10° lateralmentepara direita e esquerda, inclinada 10° para cima e para baixo); 14 medidas foram realizadasnas reconstruções multiplanares nos softwares XoranCate OsiriX. Os achados foram comparadoscom as medidas físicas através de um paquímetrodigital. O teste ANOVA e o coeficiente de correlaçãoforam utilizados com p < 0,05. Resultados:não houve diferença estatisticamente significantequando as medidas foram comparadas em aquisiçõescom diferentes tamanhos de voxels emambos os softwares. A posição da mandíbula nãoinfluenciou nas medidas. Nenhuma diferença foiencontrada quando os valores foram comparadosentre os softwares e o paquímetro digital. Conclusão:as medidas lineares em ambos os softwaresforam confiáveis e acurados comparados a mensuraçãofísica em todos os protocolos. A acuráciae a confiabilidade das mensurações não influenciaramde acordo com as variações de posicionamentoda mandíbula.

Downloads

Não há dados estatísticos.

Referências

1. Nasseh I, Al-Rawi W. Cone Beam Computed Tomography.
Dental Clinics of North America 2018; 62(3):361-91.
2. De Vos W, Casselman J, Swennen GR. Cone-beam computerized
tomography (CBCT) imaging of the oral and maxillofacial
region: a systematic review of the literature. Int J Oral
Maxillofac Surg 2009; 38:609-25.
3. Schulze RKW, Drage NA. Cone-beam computed tomography
and its applications in dental and maxillofacial radiology.
Clinical Radiology 2020; 75(9):647-57.
4. Ludlow JB, Ivanovic M. Comparative dosimetry of dental
CBCT devices and 64-slice CT for oral and maxillofacial radiology.
Oral Surgery, Oral Medicine, Oral Pathology, Oral
Radiology, and Endodontology 2008; 106(1):106-14.
5. Caetano APF, Sousa TO, Oliveira MR, Evanglista K, Bueno
JM, Silva MA. Accuracy of three cone-beam CT devices and
two software systems in the detection of vertical root fractures.
Dentomaxillofac Radiol 2021; 50(3):20200334.
6. Vaz SLA, Vasconcelos TV, Neves FS, Freitas DQ, Haiter-Neto
F. Influence of cone beam computed tomography enhancement
filters on diagnosis of simulated external root resorption.
J Endod 2012; 38:305-8.
7. Lascala C, Panelaa J, Marques M. Analysis of the accuracy
of linear measurements obtained by cone beam computed
tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;
33:291-4.
8. Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability
and accuracy of cone-beam computed tomography dental
measurements. Am J Orthod Dentofacial Orthop 2009;
136:19-25.
9. Tolentino ES, Yamashita FC, De Albuquerque S, Walewski
LA, Iwaki LC, Takeshita WM, et al. Reliability and accuracy
of linear measurements in cone-beam computed tomography
using different software programs and voxel sizes. J Conserv
Dent 2018; 21:607-12.
10. Melo SLS, Haiter-Neto F, Correa LR, Scarfe WC, Farman
AG. Comparative diagnostic yield of cone beam CT reconstruction
using various software programs on the detection
of vertical root fractures. Dentomaxillofac Radiol 2013;
42:20120459.
11. Costa FF, Gaiz BF, Umersubo OS, Pinheiro LR, Tortamo IP,
Cavalcanti MGP. Use of large-volume cone-beam computed
tomography in identification and localization of horizontal
root fracture in the presence and absence of intracanal metallic
post. J Endod 2012; 38:856-9.
12. Hassan B, Setelt P, Sanderink G. Accuracy of three-dimensional
measurements obtained from cone beam computed
tomography surface-rendered images for cephalometric
analysis: influence of patient scanning position. Eur J Orthod
2008; 23:1-6.
13. El-Beialy AR, Fayed MS, El-Bialy AM, Mostafad YA. Accuracy
and reliability of cone-beam computed tomography
measurements: Influence of head orientation. Am J Orthod
Dentofacial Orthop 2011; 140:140-57.
14. Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG,
Mallya SM. Cone-beam computed tomography to detect erosions
of the temporomandibular joint: effect of field of view
and voxel size on diagnostic efficacy and effective dose. Am J
Orthod Dentofacial Orthop 2011;140:e25-30.
15. Poleti ML, Fernandes TM, Pagin O, Moretti MR, Rubira-
-Bullen IR. Analysis of linear measurements on 3D surface
models using CBCT data segmentation obtained by automatic
standard pre-set thresholds in two segmentation software
programs: an in vitro study. Clin Oral Investig 2016; 20:179-
85.
16. Grauer D, Cevidanes LSH, Proffit WR. Working with DICOM
craniofacial images. Am J Orthod Dentofacial Orthop
2009; 136:460-70.
17. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM,
Farman AG. Linear accuracy and reliability of cone beam CT
derived 3-dimensional images constructed using an orthodontic
volumetric rendering program. Angle Orthod 2008;
78:387-95.
18. Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG.
Image distortion and spatial resolution of a commercially
available cone-beam computed tomography machine. Am J
Orthod Dentofacial Orthop 2008; 134:573-82.
19. Timock AM, Cook V, McDonald T, Leo MC, Crowe J, Benninger
BL, et al. Accuracy and reliability of buccal bone height
and thickness measurements from cone-beam computed tomography
imaging. Am J Orthod Dentofacial Orthop 2011;
140:734-44.
20. El H, Palomo JM. Measuring the airway in 3 dimensions:
a reliability and accuracy study. Am J Orthod Dentofacial
Orthop 2010; 137: S50.e1–S50.e9.
21. Gungor E, Dogan MS. Reliability and accuracy of cone-beam
computed tomography voxel density and linear distance
measurement at different voxel sizes: A study on sheep head
cadaver. J Dent Sci 2017; 12(2):145-50.
22. Liedke GS, Silveira HED, Silveira HLD, Dutra V, Figueiredo
JAP. Influence of voxel size in the diagnostic ability of
cone beam tomography to evaluate simulated external root
resorption. J Endod 2009; 35:233-5.
23. Berco M, Rigali PHJR, Miner MR, Deluca S, Anderson NK,
Will LA. Accuracy and reliability of linear cephalometric
measurements from cone-beam computed tomography scans
of a dry human skull. Am J Orthod Dentofacial Orthop 2009;
136:17.e1-9.
Publicado
2022-02-13
Como Citar
FO, R. (2022). Influência do posicionamento mandibular na acurácia e confiabilidade de medidas lineares em tomografia computadorizada de feixe cônico utilizando diferentes voxels e dois softwares. Revista Da Faculdade De Odontologia - UPF, 25(3), 443-451. https://doi.org/10.5335/rfo.v25i3.13336
Seção
Artigos